Runge-Kutta methods with minimum storage implementations
نویسنده
چکیده
Solution of partial differential equations by the method of lines requires the integration of large numbers of ordinary differential equations (ODEs). In such computations, storage requirements are typically one of the main considerations, especially if a high order ODE solver is required. We investigate Runge-Kutta methods that require only two storage locations per ODE. Existing methods of this type require additional memory if an error estimate or the ability to restart a step is required. We present a new, more general class of methods that provide error estimates and/or the ability to restart a step while still employing the minimum possible number of memory registers. Examples of such methods are shown and tested.
منابع مشابه
Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations
Strong stability-preserving (SSP) Runge–Kutta methods were developed for time integration of semidiscretizations of partial differential equations. SSP methods preserve stability properties satisfied by forward Euler time integration, under a modified time-step restriction. We consider the problem of finding explicit Runge–Kutta methods with optimal SSP time-step restrictions, first for the cas...
متن کاملEffiziente Implementierung eingebetteter Runge-Kutta-Verfahren durch Ausnutzung der Speicherzugriffslokalität
Embedded Runge-Kutta methods are among themost popular numerical solutionmethods for non-stiff initial value problems of ordinary differential equations. While possessing a simple computational structure, they provide desirable numerical properties and can adapt the step size efficiently. Therefore, embedded Runge-Kutta methods can often compute the solution function faster than other solution ...
متن کاملTotal variation diminishing Runge-Kutta schemes
In this paper we further explore a class of high order TVD (total variation diminishing) Runge-Kutta time discretization initialized in a paper by Shu and Osher, suitable for solving hyperbolic conservation laws with stable spatial discretizations. We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even for TVD (total...
متن کاملSimulation-Based Analysis of Parallel Runge-Kutta Solvers
We use simulation-based analysis to compare and investigate different shared-memory implementations of parallel and sequential embedded Runge-Kutta solvers for systems of ordinary differential equations. The results of the analysis help to provide a better understanding of the locality and scalability behavior of the implementations and can be used as a starting point for further optimizations.
متن کاملA comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel
Citation A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and defer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 229 شماره
صفحات -
تاریخ انتشار 2010